Typical curves

POLYESTER FILM

Dissipation factor change as a function of temperature at 1 KHz

Capacitance change as a function of temperature at 1 KHz

Insulation resistance as a function of temperature

Capacitance change as a function of frequency. (Room temperature)

Dissipation factor change as function of frequency. (Room temperature)

Typical curves

POLYPROPYLENE FILM

 $tg \delta 10^{-5}$

Dissipation factor change as a function of temperature at 1 KHz

Capacitance change as a function of temperature at 1 KHz

 $M\Omega \mu F$

Insulation resistance as a function of temperature

Capacitance change as a function of frequency. (Room temperature)

 $\operatorname{Tg}\delta$

Dissipation factor change as function of frequency. (Room temperature)